Переменный ток: основные понятия
Шаблоны Joomla 3 здесь: http://www.joomla3x.ru/joomla3-templates.html

Переменный ток: основные понятия

Господа, мы обсудили основные моменты, касающиеся постоянного тока. Теперь пришло время поговорить про переменный ток. Эта тема немного сложнее постоянного тока и одновременно с этим гораздо интереснее. Сегодня мы коротенечко рассмотрим вопросы, касающиеся переменного тока: что он из себя представляет, как выглядит, чем характеризуется и все в таком духе.

Для начала, призвав на помощь нами всеми любимого капитана Очевидность, введем определение. Как он подсказывает нам, переменный ток – это такой ток, который изменяется во времени. Изменяться он может по величине, направлению или по тому и другому вместе. Когда мы рассматривали постоянный ток, мы полагали, что в течении всего времени его величина постоянна: если сейчас течет 10 Ампер, то и полчаса назад текло 10 Ампер и через час будет течь 10 Ампер. Если же величина тока меняется (сейчас 10 Ампер в одну сторону, а через некоторое время 5 Ампер в другую сторону), то мы уже имеем дело с током переменным. То есть переменный ток можно рассматривать как некоторую зависимость (функцию) тока от времени: I(t). В каждые моменты времени tмгн имеет место быть конкретное значение Iмгн=I(tмгн).

Переменный ток неразрывно связан с переменным напряжением. И если при постоянном токе они были просто связаны между собой через закон Ома, то здесь в общем случае все чуточку сложнее. Как именно сложнее будем выяснять по ходу новых статей. Нет-нет, не переживайте, если дело касается обычных резисторов, закон Ома все так же продолжает выполняться . Для определенности мы будем в данной статье использовать термин "переменный ток", но все, что здесь сказано, применимо так же и для переменного напряжения: просто меняем I(t) на U(t) и все останется верным.

Переменный ток может быть периодическим и непериодическим. Периодический – это такой, который через некоторое время, называемое периодом, полностью повторяет свою форму. Ниже на картинках это будет наглядно видно. Непериодический соответственно колбасится как ему вздумается и мы не можем в нем выделить какой бы то ни было период по крайней мере на протяжении времени наблюдения.

На рисунка 1-4 приведены различные виды переменных сигналов. С некоторыми из них позднее мы подробно познакомимся.

Рисунок 1 – Синусоидальный ток

Рисунок 2 – Прямоугольный ток

Рисунок 3 – Треугольный ток

noise2

Рисунок 4 – Шум

На всех этих картинках по оси Х у нас время, а по оси Y – величина тока в Амперах.

На рисунке 2 изображен ток, форма которого называется синусом. Такая форма тока является одной из самых важных и мы будем его подробно рассматривать в дальнейшем. А начнем его изучать прямо в этой статье.

На рисунке 3 изображен прямоугольный ток. Он тоже весьма важен и его тоже мы будем потом подробно рассматривать.

На рисунке 4 изображен треугольный ток. И такая форма тока встречается не редко.

На рисунке 5 я изобразил ток хаотичной формы (шумовой). С ним постоянно приходится иметь дело в радиотехнике. В ближайшее время его касаться не планирую, но со временем – вполне возможно.

Это лишь часть возможных форм токов, каждый из которых можно считать переменным. Безусловно, существуют и другие формы, главное, чтобы этот ток менялся во времени.

Знакомство с переменным током мы начнем с синусоидального тока. В общем виде закон изменения этого тока можно описать вот таким вот хитрым выражением

Давайте разберемся что здесь есть что. Для этого взглянем на рисунок 5. Там наглядно все прорисовано.

Рисунок 5 – Синусоидальный ток

Аm называется амплитудой тока. Она показывает, какую максимальную величину имеет синусоидальный ток, а именно величину того «пика», которого достигает синус. Это становится возможным благодаря тому, что чистый "математический" синус без какого бы то ни было множителя Аm достигает в пике единички. Ясно, что если мы на единичку умножим наше число Аm то получим в пике как раз это самое число Аm. Очевидно, что чем больше Аm, тем большего значения достигает ток.

Величины ω на рисунке 5 нет. Зато на рисунке 5 есть величина f и T. Что же это такое?

Т – это период тока. Это время в секундах, за которое сигнал совершает полный цикл своих изменений. Взглянете на рисунок 5. В точке А ток пересекает ось времени, начинает расти, идет вверх до точки B, где прекращает расти и начинает убывать, снова пересекает ось времени в точке С, идет в отрицательную полуплоскость до точки D, там перестает расти и начинает убывать и становится равным нулю в точке E. Видно, что начиная с точки Е характер изменения тока будет точно таким же, как если бы он начинался с точки А. Посему время, за которое ток изменяется от точки А до точки Е и есть период Т.

Частота f – величина, обратная периоду:

Она показывает сколько периодов (по рисунку 5 – изменений от точки А до точки Е) умещается в одной секунде времени. Соответсвенно чем больше частота, тем меньше пириод и наоборот.

Изменяется частота в герцах. Если частота 1 Гц – это значит, что время изменения тока от точки А до точки Е равно 1 секунда. Если частота, например, 50 Гц (как в наших с вами розетках), это значит, что за 1 секунду успевает произойти 50 полных циклов изменения тока от точки А до точки Е. Если частота 2,4 ГГц (как в некоторых процессорах, и, кроме того, на такой частоте работает всеми нами любимый Wi-Fi), это значит, что за 1 секунду сигнал претерпевает аж 2,4 миллиарда итераций от точки А до точки Е!

С периодом Т (и, соответственно, с частотой f) плотно связана другая величина – как раз та самая ω, которая стоит в нашей формуле под синусом. Называется она круговая частота и связана она следующим образом

 

Ох ты ж блин. Чем дальше – тем хуже. Какие-то π откуда-то повылазили. Откуда они тут вообще и что забыли?! Давайте разберемся.

Господа, надеюсь, вы помните из курса математики, что синус – сама по себе функция периодическая и период синуса как раз равен 2·π радиан. Ну или 360°, что тоже самое, однако я предпочитаю обычно вести расчет в радианах. То есть для простого классического математического синуса расстояние от точки А до точки Е равно 2·π=6,28 радиан. Как же теперь увязать эти радианы со временем и с нашим периодом? Ведь в нашем графике тока у нас по оси Х именно время, а не радианы. Очень просто. Полагаем, что 2·π радианам соответствует наш период Т. Для того же, чтобы посчитать скольки радианам соответствует произвольное время t1 надо выполнить следующее преобразование: . Знаю, звучит запутанно, поэтому давайте разберем на примере. Давайте запишем зависимость тока от времени для периода Т=4 секунды. Как будет выглядеть преобразованная формула синуса для этого случая? Как-то так

 

Изображаем это на рисунке 6.

Рисунок 6 – Синусоидальный ток с периодом 4 секунды

Видите, все честно, на графике наглядно видно, что период синуса равен, как мы и хотели, четырем секундам.

Итак, с амплитудой разобрались, с круговой частотой вроде тоже. Осталось последнее – φ0 – начальная фаза. Что же это такое? Все просто, господа. Фаза здесь – это просто сдвиг графика тока по временной оси. То есть график тока будет стартовать не с нуля, а с какого-то другого значения. Действительно, если мы в нашу формулу для зависимости тока от времени подставим время, равное нулю, то получим

Из этого выражения очевидно еще и то, что фаза измеряется в градусах или радианах: только градусы или радианы имеют право стоять под синусом.

Давайте возьмем наш график тока с периодом Т=4 секунды и положим, что начальная фаза равна 30° или, что тоже самое, 0,52 радина. Имеем

Построим график для данного случая на рисунке 7.


Рисунок 7 – Синусоидальный ток с периодом 4 секунды и начальной фазой 30°

Внимательный читатель, посмотрев попристальнее на график, изображенный на рисунке 7, скажет: так фаза вообще какая-то скользкая штука. Она ж зависит от того, где мы поставим нолик, то есть когда начнем наблюдать сигнал. И вообще может быть чуть ли не любой. Господа, замечание абсолютно верно! Сама по себе как таковая фаза достаточно редко когда интересна. Гораздо интереснее разность фаз между несколькими сигналами. Взгляните на рисунок 9. На нем изображены два графика: один зеленый имеет начальную фазу в φ0_зелен=90°, а второй синий – φ0_син=90°. Разность фаз между ними

 

Рисунок 8 – Два сигнала, сдвинутые по фазе

И заметьте, господа, эта разность фаз одна и таже всегда для любой точки этих графиков. Без привязки к нулю и к началу. Вот это уже гораздо интереснее и может много где пригодиться.

Вообще фаза такая штука, что как-то традиционно на нее обращается не очень много внимания, между тем, как на самом деле это очень важная величина. Фазовая модуляция, трехфазные цепи, фазированные антенные решетки, фазовые системы автоподстройки частоты, когерентная обработка сигналов – вот лишь малая область систем, где фаза сигнала является одним из главнейших факторов. Поэтому, господа, постарайтесь с ней подружиться .

На сегоня заканчиваем, господа. Сегодня была вводная статья в мир переменного тока. Дальше будем разбираться в нем более подробно. Всем вам большой удачи, и пока!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.


You have no rights to post comments

ГРУППА ВК